Entity Management and Security in P2P Grid
Framework

T. N. Ellahi, B. Hudzia, L. McDermott, T. Kechadi, A. Ottewill

Parallel Computational Research Group,
School of Computer Science and Informatics,
University College Dublin, Belfield, Dublin 4, Ireland
tariq.ellahiQucd.ie, benoit.hudzia®ucd.ie
liam.mcdermott@Qucd.ie, tahar.kechadi@ucd.ie, Adrian.Ottewill@ucd.ie

Abstract. During the last decade there has been a huge interest in Grid
technologies, and numerous Grid projects have been initiated with vari-
ous visions of the Grid. While all these visions have the same goal of re-
source sharing, they differ in the functionality that a Grid supports, char-
acterization, programming environments, etc. In this paper we present a
new Grid system dedicated to deal with data issues, called DGET (Data
Grid Environment and Tools). DGET is characterized by its peer-to-peer
communication system and entity-based architecture, therefore, taking
advantage of the main functionality of both systems; P2P and Grid.
DGET is currently under development and a prototype implementing
the main components is in its first phase of testing. In this paper we gives
description of two main components of DGET: Entity Management and
Security subsystem.

1 Introduction

In recent years, Internet-scale systems have been developed and deployed to
share resources at a very large scale across the traditional organisational bound-
aries. The need for constructing such systems was motivated by the increas-
ingly complex requirements of modern applications from diverse disciplines. Such
global scale systems provide opportunities to harness idle resources which are dis-
tributed and heterogeneous. Another benefit offered by such systems is that they
allow coordinated use of resources from multiple organisations. Thus, these wide-
area systems may span multiple organisations and form virtual organisations on
top of the existing organisational hierarchies. Two such systems exploiting these
views include Grid and Peer-to-Peer (P2P) systems. Grid and P2P have seen
a rapid evolution and widespread deployment. The two technologies appear to
have the same final objective, pooling and coordinating large sets of distributed
resources(1]. During the last few years various projects have been undertaken to
try to merge these two complementary approaches of these technologies, such as
OurGrid[2]. Also various modifications to the Globus toolkit(3] have been pro-
posed to include P2P technology and thus improving the discovery system(4].

© A. Gelbukh, S. Torres, I. Lopez (Eds.)
Advances in Computer Science and Engineering
Research in Computing Science 19, 2006, pp. 121-136

122 Noor Ellahi T., Hudzia B., McDermott L., Kechadi T. and Ottewill A.

Typically, Grid systems are designed to run applications with intensive com-
puting and storage needs across the traditional organisational boundaries[5-7].
They are characterised by their sophisticated resource management and data
transfer components. P2P systems on the other hand were mainly designed for
resource sharing, mostly files. Therefore, the focus of P2P systems is on pro-
viding sophisticated resource discovery capabilities. Both approaches have their
own advantages and disadvantages.

In this paper we describe DGET (Data Grid Environment & Tools). DGET is
a P2P based grid middleware. This paper explains the functionality of two main
components of the middleware: EntityManager and Security. Details of DGET
architecture and other components can be found in [8][9](10][11]. The rest of the
paper is structured as follows: Related work is described in section 2. Section
3 and 4 explain general overview and an intrduction to DGET architecture re-
spectively. Details about Entity Management are given in section 5 and Security
subsystem is explained in section 6. The paper concludes in section 7.

2 Related Work

DGET is P2P Grid middleware and employs techniques from both fields. DGET
should be compared to other midlewares adopting the P2P Grid approach. The
following paragraphs describe how DGET is distinguished from existing solu-
tions.

DGET and Grid Middleware: A number of grid midleware has been developed
and used. A wide range of systems have been developed. Some of these focus
on providing the core middleware services while other programming frameworks
are built on top of these middleware systems and provide high-level applica-
tion development functionalities. Globus, Legion and UNICORE are the most
notable grid middlewares. The Globus Toolkit is the most widely used middle-
ware. DGET has some distinct characteristics. First, existing grid middlewares
adopt a manual and static topology whereas DGET is based on dynamic, self-
organizing topology borrowed from the decentralised P2P systems. Other dis-
tinguishing DGET features include a decentralized P2P style resource discovery
and fine grained access control. Existing grid systems depend on specialized cen-
tral servers to maintain information about shared resources. DGET, on the other
hand adopts the P2P style decentralized resource discovery approach and thus
doesn’t rely on any specialized servers.

On the security front, Globus possess an extremely powerful security system
but it has considerable management overhead. All the users are required to
have individual accounts on the machines before they can use the resource.
This situation is applicable if there are a limited number of participants. In a
situation where a very large number of users are present this technique would
become very cumbersome. DGET on the contrary doesn’t require users to have
individual user accounts on the resources. DGET’s security mechanism is based
on an extended Java security model. Other aspects where DGET security differs

Entity Management and Security in P2P Grid Framework 123

from Globus are the fine-grained access control policies and the resource quota
control. DGET uses XACML([12] to define fine-grained access control policies.

DGET and Hybrid Systems: Some system designers have tried integrating both
P2P and Grid approaches to come up with a system which enjoys the benefits
of both grid and P2P systems[4]. This section compares DGET’s approach with
such hybrid P2P Grid systems. Our Grid is one such P2P Grid middleware. Our-
Grid[2] bears many similarities with DGET but has some differences as well. Our
Grid lacks sophisticated resource discovery solutions present in DGET. Another
difference between DGET and OurGrid is migration support. DGET supports
strong transparent migration of applications but OurGrid does not.

3 DGET Overview

As described in the related work section, there are a few systems that have com-
bined the concepts from both Grid and P2P systems. Such hybrid systems are
called P2P Grids. DGET adopts the same approach and exploits the advantages
of both systems and provides an integrated environment for manipulating and
analyzing very large data sets.

3.1 DGET Objectives

We have set the following high-level objectives for DGET middleware.

Uniform Management Interface: Resources in DGET systems are represented
through a standard and uniform interface. This approach helps in masking the
intra-resource heterogeneity. Users don’t have to master the entire heterogeneous
interface. New resources can be seamlessly added to the system.

Simplicity €4 Ease of Use: Grid users are typically non-technical, therefore, it
is imperative that grid middleware should be simple and easy to use. DGET
should tackle the low-level complexities and make it simple for the grid users to
use and manage.

Fault Tolerance: In a large scale grid system, faults are not an exception but a
norm. DGET should be able to manage the survive system failures transparently
without degrading the application performance.

Scalable Architecture: DGET architecture should be scalable to accommodate
thousands or even millions of users, resources and data sets. DGET topology
must be decentralized and dynamic as centralized architecture result in poor
scalability of the system

124 Noor Ellahi T., Hudzia B., McDermott L., Kechadi T. and Ottewill A.

3.2 DGET Concepts

Entity: An Entity is a network enabled discrete unit of abstraction that provides
some functionality to its users. Entity can take many forms e.g. a remote compu-
tation, a remote object, a server that processes user requests etc. The Concept
of an entity is akin to a process in the operating systems. An Entity is a mobile
element that can move around on different nuclei. An Entity is composed of two
parts, a system provided Shell and user provided Ghost. Definitions of these are
given below.

Shell The Shell is the system provided control part of the entity. Shell exposes
a management interface through which entities can be manipulated. Shell is
attached to the programmer provided Ghost when an entity is created.

Ghost The Ghost represents the programmer provided part of an entity. Ghost
implements the actual logic of the functionality.

Nucleus The Nucleus is the kernel of the system. It Provides basic services like
lifecycle management, communication, security etc. to entities.

Connector Transport protocol agnostic communication medium provided to
entities for communicating with each other. Connector is a polymorphic artifact
that supports a rich set of interaction models between the entities. Connector
is a high level construct which shields programmers from low-level connection
setup related operations. Another distinguishing feature of connector is that
it is a restorable communication medium which plays a key role in the entity
migration process.

4 DGET Architecture

In this section we will give an overview of the architectural components. De-
tailed description of these components is given in their respective sections. The
purpose of this section is to give an overview about how all the components
are structured and organised. Figure 1 shows a diagrammatic overview of the
system. The DGET system is composed of three logical layers. The Following is
a brief description each layer and the components residing in that layer.

Core Layer This layer provides basic services to the entities executing in the
nucleus. These basic services include communication facilities, lifecycle manage-
ment and security.

Facilitation Layer This is the second layer in the system. It facilitates execution
of the entities by providing them certain services. The components residing at
this layer are also modeled as entities. Entities residing at this layer are called
System entities. System entities use the services provided by the core layer.
Certain components from the Core layer are modeled as system entities as well.
Therefore, in the diagram, Security and EntityManager components span both
Core and Facilitation layers. The following entities are located at this layer.

Entity Management and Security in P2P Grid Framework 125

Fig. 1. DGET Architectural Compenents

— Entity Manager Entity This entity provides lifecycle management ser-
vices. This entity to instantiate new entities or manipulate existing entities.

— Policy Entity This entity serves as the policy repository of the nucleus.
Access control and other management related policies are maintained in the
policy entity.

— Resource Discovery Entity This entity implements the DGET resource
discovery component. Resources and services provides by other entities are
discovered through resource discovery entity.

User Layer This is the top most layer in the system. Entities developed by the
users and deployed into the system reside at this layer. Entities located at this
layer provide user implemented functionality to the users.

5 Entity Management

Entity Creation & Isolation The EntityManager entity is responsible for initi-
ating the creation of a user entity in the Nucleus. As described previously, the
EntityManager functionality is exposed as a System Entity in the Nucleus. The
EntityManager Entity (EME) publishes its existence along with the character-
istics of the host so other entities can locate EMEs according to their require-
ments. In order to access the local EME running in the same Nucleus, entities
can use EntityContext. EME creates a shell and passes it the system parame-
ters required to load a ghost. These system parameters include a GhostLoader
reference, ThreadGroup reference and information about the Ghost to be instan-
tiated. Shell uses these parameters and instantiates the Ghost. After successful
instantiation of the Ghost, the Shell calls the setEntityContext () method on
the Ghost class passing in the EntityContext object. The Shell also passes an
instance of itself to the Ghost. The Ghost can use this instance to invoke lifecy-
cle management operations on itself. The EntityContext class is the medium
ghosts can use to access system services supported by the Nucleus.

public class EntityContext {
public Connector getEMEntity();

126 Noor Ellahi T., Hud=ia B., McDermott L., Kechadi T. and Ottewill A.

public Connector getRDEntity () {};

public Shell getShell();

public NucleusInfo getNucleusInfo();
public Resource[] getResourceLimits();
public Resource[] getResourceConsumption();

¥

Entity isolation in the Nucleus is provided by a custom classloader called
GhostLoader. A separate GhostLoader is used to load all the classes belonging to
an entity thus providing a separate namespace for the entity classes. GhostLoader
associates a security context with the entities classes. This security context is
used during its execution to take the access control decisions. Communication
between entities is done through connectors. GhostLoader has other functions in
DGET beside providing separate namespaces for entity classes. These include in-
strumenting entity bytecode to support soft termination, transparent migration
and resource control etc.

Soft Termination Entity termination means killing all the threads an entity
might have created during its execution. Sun has declared the thread termina-
tion methods as potentially unsafe[13] and deprecated them. Another approach
should be adopted to terminate all the threads belonging to an entity. DGET
uses the following approach for soft termination of entity threads:

An Execution class is introduced. This Execution class has a flag indicating
the execution state of the entity. During the execution, all entity threads call the
check() method periodically. If execution flag is RUNNING, check() method
returns silently but if execution state is TERMINATED, the check() method
throws

EntityTerminatedException. During the loading process, entity classes are in-
strumented with this execution checks. All the methods are also instrumented
with try/catch blocks. The catch catches the EntityTerminatedException
exception and re-throws this exception to propagate it down the thread stack.
Entity classes are not allowed to catch this exception.. During the classloading
and instrumentation process, entity class files are scanned to find exception han-
dlers for the EntityTerminatedException. This scanning ensures the malicious
programmer don’t catch this error in order to avoid the entity termination.

5.1 Migration Support

One of the distinguishing features of DGET is strong migration support in a
transparent manner. This section describes implementation details of migration
support in DGET.

Implementation Techniques The deciding factor in choosing these method-
ologics were the requirements of portability of the solution, minimal space and
time overhead. Code blocks injected into entity classes through bytecode un-
strumentation perform different functions like program counter restoration and

Entity Management and Security in P2P Grid Framework 127

execution checkpoints (described shortly). The bytecode instrumentation is per-
formed at class load time by a custom classloader. Bytecode instrumentation is
performed by the classloader using the Byte Code Enginerring Library(BCEL)[14].
The Second technique used for capturing and restoring execution state is the
Java Platform Debugger Architecture (JPDA). JPDA is part of the JVM spec-
ification and thus it is implemented by every standard JVM implementation.
JPDA provides access to runtime information of the JVM including the thread
stacks. JPDA is implemented purely in Java so our migration solution doesn’t
lose portability

Migration Enabling Features These paragraphs explain the features that
enable transparent strong migration in DGET. In order to perform migration
at an arbitrary point, values on the operand stack must be saved and restored
during the entity restoration process. JPDA doesn’t expose any methods to
access the values currently present on the operand stack. Initiating migration
at such point might result in loss of data from the operand stack. One solution
could be to insert checkpoints in the code at locations where execution is not
in the middle of a source code level instruction. Migration requests should be
delayed till the execution reaches any such checkpoint. Execution checkpoints
are inserted as the first instruction in every method and in all the loops in every
method.

Another DGET feature to support multi-threaded migration is Mobile Mon-
itors. Java provides multi-threading support in the form of synchronized meth-
ods and code blocks. A monitor is associated with each java object by JVM and
before entering a synchronized method or code block, a thread has to acquire
the monitor associated with the object. Monitors associated with java objects
are maintained and hidden inside the JVM. These monitors are not serilizable
and thus are not transported with the serialized objects. Mobile monitors pre-
serve the lock state upon migration. During the class loading process, class files
are instrumented to replace Synchronized methods and code blocks. A Mobile
monitor is associated with a class that requires synchronized access.

Migration Process

Entity Suspension: The migration process is initiated when the export()
method is invoked on the Shell. Execution checkpoints discussed in the previous
section are used to halt the execution of the entity The export method calls the
suspend () method on the associated Execution class. As a result, execution of
all the threads is blocked on the next execution checkpoint.

State Capture The StackFrame class from JPDA represents a method call
on the thread stack. The StackFrame class gives access to the values of local
variables and the program counter. Calling the visibleVariable() method on
the StackFrame class returns a list of all the variables accessible till the point
of execution in the method code. Execution state of all the entity threads along

128 Noor Ellahi T., Hudzia B., McDermott L., Kechadi T. and Ottewill A.

with the mobile monitors and Execution class is saved in a serializable format
and transported to the destination for reincarnation of the entity.

State Restoration On the destination nucleus, entity state is restored by calling
the import () method of the shell. Saved image of entity’s execution context is
passed as a parameter to the import () method.To reestablish the execution state
of a thread, its method stack must be rebuilt. To do this, all the methods are
called in the order they were on the stack before execution was suspended and
migration was initiated. Event handlers can be set that are called when method
entry/exit event occurs. When a method entry event occurs, such event handlers
restore the values of local variable of the method from the saved execution image.
After restoring local variables execution should continue from the code position
which is the method invocation for the next method on the stack. Doing so
will ensure the instructions already executed are skipped and restoration of the
next method on the stack frame begins and proceeds in the same manner. After
restoring all the threads to the state they were before the migration was initiated,
the resume () method on the Execution class is called. This method sets the
execution status flag to RUNNING and notifies all the threads blocked on this
class. Execution proceeds normally afterwards.

As mentioned in the previous paragraph, after restoring local variables, ex-
ecution should continue from the code position which is the method invocation
of the next method on the stack. No mechanism is available in JPDA to set
the value of the program counter register to this code position. This problem
is solved by maintaining an artificial program counter (APC) which represents
an index of method invocations in the method. This APC is incremented after
every method invocation instruction. This APC is used in conjunction with a
tableswitch bytecode instruction which branches the execution according the
value of the APC. This tableswitch and APC increment instructions are added
during the instrumentation procedure. tableswitch is added at the beginning
of each method and defaults to the original starting code position of the method
code.

6 Security

In opposition to grid systems, no centralized servers are present in P2P thus
security should not rely on the presence of a centralized server to store and
process security related information. All the security related decisions should
be made in a decentralized manner making the system scalable. The security
model in DGET is designed keeping in mind the P2P system characteristics.
The following are the important features of the DGET security model:

— Distributed low-overhead identity based authentication mechanism
— Policy based fine-grained access control

— Distributed security policy management

— Fine grained need-to-act based permission delegation

Entity Management and Security in P2P Grid Framework 129

Policy
Entity

Invocatson Handler)

Autron raton Handler y
Key Stmmgrment
Authenuication Hasdler)+ Ergine

Connector]

s Shell =)

Secunty
Entity

Fig. 2. Security Handlers

6.1 DGET Security Architecture

DGET employs several techniques and components to provide a secure execution
environment for entities. This section provides a brief overview of the DGET
security architecture. The description of the security system architecture is as
follows:

Security Policy-Aware Resource Discovery DGET is equipped with a
sophisticated P2P style resource discovery system(8][9]. It is important to en-
hance resource discovery with security policies so that only those resources are
discovered which the user has access to thus increasing system efficiency and pro-
ductivity. Access control policies are advertised along with the resources so the
resource discovery system can analyze this policy during the resource discovery
process.

Security Handlers The Shell being the control part of an entity, is the most
logical place to perform security related operations. The Shell is equipped with a
set of security handlers which process the request to apply. security functionality.
These handlers are structured in the form Chain of Responsibility (CoR) design
pattern. The following two handlers perform security operations:

Authentication Handler This handler performs the authentication and estab-
lishes identity/attributes which can be used during the authorization decision
process. Details of the authentication mechanism are described in the following
sections

Authorization Handler After the successful completion of the authentication
process by the authentication handler, user attributes are extracted from user
credentials and the request is passed on to the Authorization Handler (AH).
This handler carries out the authorization decision process.

Policy Repository Access control information is specified using policies which
are updated dynamically. There are multiple levels of security polices specified
by different users according to their roles in the system. Policy information is

130 Noor Ellahi T., Hudzia B., McDermott L., Kechadi T. and Ottewill A.

maintained in a separate Entity called the Policy Entity. The Policy Entity is a
System Entity and thus it is also subject to the authorization.

Security Entity Security Entity is responsible for the creation and verification
of certificates, keys and signatures. The SE is considered as a Trusted Authority
(TA) that is valid PKG with the necessary information proving its validity. In
the current implementation of DGET, we have used a hard coded certificate
that exists in all nuclei to ensure a high level of security for the system. The
SE plays the role of Keystore for all the other Entities within the Nucleus Since
this Entity holds the keys and handles signature verification, we implemented a
cache system for frequent authentication and signature verification.

6.2 Authentication Mechanisms

We have designed Identity Based Cryptographic (IBC) solution to handle the
authentication of DGET. We were inspired by various solutions that appeared
lately in[15, 16, ?]. It provides an easy way to manage keys and the benefits from
the ID-based approach include:

Automatic revocation via expiry of time-limited identifiers.

— Reduced round trips if the user can predict delegation requests.

Reduced bandwidth.

— Similar computational costs.

Trivial computation of proxy key pairs (RSA key pair generation replaced
by elliptic curve multiplication).

Replication of existing GRID security capabilities.

Possibility of providing Signencryption scheme.

The IBC system we decided to implement is a variation of the SOK-IBS|ref]

SOK-IBS scheme: This subsection gives formal definitions of presumed hard
computational problems on which the SOK-IBS relies.

Bilinear Maps Let G be a cyclic additive group generated by P, whose order
is a prime ¢. Let V be a cyclic multiplicative group of the same order. We use
Weil or the Tate pairing (& : G x G — V) over supersingular elliptic curves or
Abelian varieties over finite field because they can provide admissible maps over
cyclic groups satisfying those properties[17]:
— Bilinearity:
For any P, Q,R € G, we have é(P + Q,R) = é(P ,R)&(Q ,R) and &(P,Q +
R) = &(P,Q)é(P,R).
In particular, for any a, b € Z,, &aP, bP) = &(P, P)et = &(P, abP) =
é(abP, P).
— Non-degeneracy:
There exists P,Q € G, such that &(P,Q) # 1.
— Computability: There is an efficient algorithm to compute é(P,Q) for all P,Q
€ G.

Entity Management and Security in P2P Grid Framework 131

Diffie-Hellman problems Consider a cyclic group G, of prime order q.

— The Computational Diffie-Hellman problem (CDH) in G; is, given (
hP, aP, bP) for un- known a, b € Z,4, to compute abP € G;.

— The one more CDH problem (Im-CDH) is,
given (P, aP) € G, for an unknown a € Z,, and access to a target oracle[18]

T g, returning randomly chosen elements Y; in Gy (fori = 1; ; q, q)
being the exact number of queries to this oracle) as well as a multiplication
oracle.

HGl % (.) answering aW inG, when queried on an input W inGy, to produce
a list ((Z1; J1)y -+ » (Zqt » Jqt)) of g pairs such that Z; = aY;; inG, for all i

=1,..., ¢, I < ji < q and g, < q where qm denotes the number of queries
made to the multiplication oracle.

Scheme The modified SOK-IBS scheme was proven to be as secure as the
one-more Diffie-Hellman problem [19]. This scheme is made of four operations:

— Setup:Given a security parameter k, the Private Key Generator (PKG) se-
lects groups G; and G2 of prime order ¢ > 2%, a generator P of Gy, a
randomly chosen master key s € Z; and the associated public key P,y =
sP. It also selects cryptographic hash functions of the same domain and
range Hy,H; : 0, 1 — G,*. The public parameters of the system are:
params = (Gl ’ Gg é, P, Ppub,Hl,Hg)

— KeyGen:Given the ID of a user, the PKG computes
Q;p = H;(ID) € G, and the associated private key
dip = sQrp € G; that is transmitted to the user.

— Sign:In order to sign a message M,

e Pick a random integer € Z; and compute .
U=7rPe G,.Then H = HQ(ID,M,U) € G;.

e Compute V = d;p + rH € G, where + indicates addition operation on
the group G;.

The signature on M is the pair = (U, V) € G1 x G1.

— Verify:To verify a signature = (U, V) € G x G on a message M, the verifier
first obtains the ID of the signer and computes Q;p = H;(ID) € G;. The
verifier recalculates H = H,(ID,M,U) € G;. .

The signature is accepted if &P, V) = &(Ppus,Qrp)&(U,H) and is rejected
otherwise.

The multi-authority scalable DGET Authentication systems: As noted
in [19] the use of a random seed to handle unlinkability concerns allows the
sender and receiver to have different PKG since no pairing is involved with the

132 Noor Ellahi T., Hudzia B., McDermott L., Kechadi T. and Ottewill A.

receiver’s private key (and respectively with the sender’s one). This allows us
to provide signature and hence authentication capabilities as long as the public
keys of the involved PKGs are trusted. Such specific functionality is used to
create a hybrid solution between a full identity based solution like a hierarchical
ID based one and traditional PKI system. This solution allows more flexibility
than traditional PKI or HIBE while reducing the overall network load and com-
putational overhead on the system. In the next section we will describe how we
implemented such a system.

Every single Entity, Nucleus and user has its own ID. So before becoming part
of DGET every element must register its identity with a TA. Upon a success-
ful registration of ID, the TA will issue the corresponding private key. Every
Nucleus possess a Security Entity, so no remote secure communication channel
is required to be open and the authentication process is purely local. Since the
public key is simply the identity string, this allows a more fine grained control
of the key management by adding more information to the identity string such
as: a validity period ,delegation characteristic, security domain restriction,etc...
The validity period depends on the type of element registered. While a Nucleus
might get a long validity period an Entity will get a shorter one corresponding to
their average lifecycle. This means that in some cases the authentication string
will need to be renewed due to an excessively short validity period.

L Al vty

L T i

bR o Rl i

..........

Fig. 3. Entity permissions set Schema

6.3 Policy Repository

Every Nucleus has its own Policy Entity storing its local policies independent of
other participants in the grid community. The Policy Entity exposes interfaces
to insert, update and delete policies, making the policy administration easier.
Policy updates become immediately visible to the authorization decision process.
The Policy Entity can be configured to retrieve policies from external sources

Entity Management and Security in P2P Grid Framework 133

as well. DGET supports multiple levels of policies governing different aspects of
the system. Different policy levels supported by DGET are described below:

Domain Policy Domain policies specify the access control rules defined accord-
ing to the domain in which the Nucleus is running. Domain policies can be either
specified or the Policy Entity can be configured to retrieve a Domain policy from
the domain policy repositories.

Nucleus Policy Nucleus policy specifies the policies governing access to system
resources and entities. Nucleus policies are specified by Nucleus administrators.

Entity Policy Entity policies decouple access control logic from the Entity
application logic and thus updates can be made without changing the Entity
code or without redeploying the Entities. Entity policy typically specifies which
operations on the Entity are allowed by which users or Entities.

Acting Policy The Acting policy is used for fine-grained permission delegation.
The Acting policy follows the least privilege principle and thus allows users to
allocate fine grained permissions on the need-to-act basis. The Acting policies
controls the level of permissions granted to tasks or requests.

6.4 Authorization and Access Control

Access to scarce system resources and Entities must be controlled and subject

to verification of permissions on the resource or perform an operation on the
Entity.

Authorization Model DGET uses an association based authorization model.
Permissions are organized as authorization profiles. Permissions are granted to
profiles and members from the P2P groups, depending on the agreements be-
tween the members. Users are required to present credentials to prove their
membership with any organization. Based on the membership credentials pre-
sented, permissions from the corresponding authorization profiles are granted to
the users.

Permission Delegation DGET provides functionality to support fine grained
permission delegation following the least privilege principal. Entities can be
granted permissions on a need-to-act basis thus avoiding any potential secu-
rity problem. Users can delegate permissions temporarily to other users who
are not members of the organization, or who have rights granted to it. Short-
term ad-hoc collaboration scenarios can be supported with this feature. Thes.e
delegated permissions are attached to the request as the Acting Policy and is
evaluated as the part of authorization decision process.

134 Noor Ellahi T., Hudzia B., McDermott L., Kechadi T. and Ottewill A.

Access Control The Grid is an inherently insecure environment because code
is remotely downloaded and executed. Access to shared resources and services
must be controlled in order to avoid any misuse. Access control must be exercised
at two levels: Nucleus and Entity. The following two paragraphs explain these
two aspects of access control:

Nucleus Protection The Nucleus provides the execution environment for En-
tities. During execution, Entities access the system resources like memory, disk
and network etc. It is of utmost importance that access to these resources is
controlled. In the absence of such protection mechanisms, some malicious Enti-
ties can hijack the Nucleus thus resulting in a Denial of Service (DoS) attack.
Nucleus protection is achieved through the Java sandboxing mechanism. DGET
uses customized classloaders called GhostLoaders to load ghost classes. Ghost-
Loaders associate appropriate ProtectionDomains based on the authorization

profiles.

Entity Protection Besides Nucleus protection, Entities running inside the Nu-
cleus should be protected from misuse as well. Entity owners specify Entity access
control policies. These policies are put in place during the deployment. Method
invocations on Entities are intercepted and processed through the Authoriza-
tion Handler. If the method invocation is permitted , the invocation request is
processed, otherwise it is rejected.

7 Conclusion

This paper described two main components of the DGET architecture. DGET
simplifies the deployment, management and usage of grid systems. DGET pro-
vides a dynamic and scalable solution for entity management and security op-
erations that relies on truly decentralized and self-organizing topology. DGET
enables resource sharing with the least management overhead and makes grid
programming an easier task. DGET provides a flexible interface to adopt any
security model. In the future, we plan to incorporate more sophisticated features
like fine-grained resource control thus making it feasible to provide Quality of
Service (QoS)and support and enforce Service Level Agreements (SLA).

References

1. Adriana Iamnitchi Jan Foster. On death, taxes, and the convergence of peer-to-
peer and grid computing. In 2nd International Workshop on Peer-to-Peer Systems
(IPTPS’08), 2003.

2. G. Germoglio N. Andrade, L. Costa and W. Cirne. Peer-to-peer grid computing
with the ourgrid community. In Proceedings of the SBRC 2005 - IV Saldo de
Ferramentas (29rd Brazilian Symposium on Computer Networks - IV Special Tools
Session), May 2005.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Entity Management and Security in P2P Grid Framework 135

I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
The International Journal of Supercomputer Applications and High Performance
Computing, 11(2):115-128, Summer 1997.

Domenico Talia and Paolo Trunfio. Toward a synergy between p2p and grids.
IEEE Internet Computing, 7(4):96-95, 2003.

Ian Foster. The anatomy of the Grid: Enabling scalable virtual organizations.
Lecture Notes in Computer Science, 2150:1-??, 2001.

. L. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid: An

open grid services architecture for distributed systems integration. Open Grid
Service Infrastructure WG, Global Grid Forum, 2002.

A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The data grid:
Towards an architecture for the distributed management and analysis of large
scientific datasets. Journal of Network and Computer Applications, 23:187-200,
2001.

Adrian Ottewill Benoit Hudzia, M-Tahar Kechadi. Treep: A tree based p2p network
architecture. In IEEE Internatonal Conference on Cluster Computing (Cluster
2005), 2005.

T.N. Ellahi and M-T. Kechadi. Distributed resource discovery in wide area grid
environments. In The Ist International Workshop on Active and Programmable
Grids Architectures and Components APGAC’04, Krakow, Poland, 2004.

T.N. Ellahi B. Hudzia, L. McDermott and T. Kechadi. Entity based peer to peer
in data grid environments. In 17th IMACS World Congress, Paris, France, 2005.

T.N. Ellahi B. Hudzia, L. McDermott and T. Kechadi. A java based architecture
of p2p-grid middleware. In The 2006 International Conference on Parallel and
Distributed Processing Techniques and Applications, 2006.

Time Moses. extensible access control markup language (xacml) version 2.0. In
OASIS Standard, February 2005.

Sun Microsystems Inc. Why are thread.stop, thread.suspend,
thread.resume and runtime.runfinalizersonexit deprecated?
http://java.sun.com/j2se/1.4.2/docs/guide/misc/ threadprimitivedepreca-

tion.html (visited 16-jan-06).

The byte code engineering library (bcel) http://jakarta.apache.org/bcel/ (visited
16-jan-06).

Webno Mao. An identity-based non-interactive authentication framework for com-
putational grids. Technical report, Trusted System Laboratory, HP Laboratories,
June 2004.

H.W. Lim and K.G. Paterson. Identity-based cryptography for grid security. In
Proceedings of the 1st IEEE International Conference on e-Science and Grid Com-
puting (e-Science 2005), Melbourne, Australia, 2005.

Ian F. Blake, G. Seroussi, and N. P. Smart. Elliptic curves in cryptography. Cam-
bridge University Press, New York, NY, USA, 1999.

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM Conference on Computer and Communica-
tions Security, pages 62-73, 1993.

B. Libert and J. Quisquater. The exact security of an identity based signature and
its applications, 2004.

